VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY, BURLA DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING SESSION 2014-15 (ODD SEMESTER), SUPPLEMENTARY

Total Pages-5

(Set-L)

B. Tech-3rd

Metallurgical Thermodynamics and Kinetics

Full Marks: 70

Time: 3 hours

Answer Q.No.1 and any five from of the rest questions

The figures in the right-hand margin indicate marks

- 1. Answer the following questions: 2×10
 - (i) What do you mean by standard state of a system?
 - (ii) What do you mean by degree of reduction?
 - (iii) What is internal energy of a system?
 - (iv) What is basic principle of TGA?
 - (v) What is Henry's law?
 - (vi) What is the relation between internal energy, heat and work?

(Turn Over)

- (vii) What is the equilibrium constant for the reaction $PCl_5 = PCl_3 + Cl_{2(g)}$ in terms of activity and partial pressure.
- (viii) What is reversible process?
- (ix) What do you mean by triple point?
- (x) What do you mean by temperature dependence of entropy?
- 2. (a) What is an ideal solution? Explain the important characteristics of an ideal solution in terms of:
 - (i) Thermodynamic chemical potential
 - (ii) Enthalpy and
 - (iii) Entropy increase of a component
 - (b) The reduction of iron oxide in the blast furnace proceeds according to the following reactions:

5

$$3\text{Fe}_2\text{O}_3 + \text{CO} = 2\text{Fe}_3\text{O}_4 + \text{CO}_2;$$

 $\Delta \text{H}^\circ 298 = -12.7 \text{ k.cal}$

$$Fe_3O_4 + CO = 3 FeO + CO_2;$$

 $\Delta H^{\circ} 298 = +9.8 \text{ k.cal}$

FeO + CO = Fe + CO₂;

$$\Delta H^{\circ}298 = -4.4 \text{ k.cal}$$

Calculate $\Delta H^{\circ}298$ for the reaction
Fe₂O₃ + 3CO = 2Fe + 3CO₂;

- 3. (a) Derive expression for entropy change of perfect gas. Discuss the important characteristics of entropy.

 3 + 2
 - (b) Find the increase in molar entropy of copper when it is heated from 127°C to 927°C. The molar Sp. Heat of copper is given by $C_p = 6.2 + 0.0017T$.
 - 4. (a) Derive Gibbs Helmholtz equation

$$\left[\frac{\partial(\Delta G/T)}{\partial T}\right]_{P} = -\Delta H/T^{2}.$$

5

(b) The latent heat of fusion of ice at O°C is 1440 cals and the heat capacity of ice and water are 8.7 and 80 calories per mole. Calculate the change in Gibbs potential in the freezing of a mol of water at -20°C.

5.	Write short notes on any three of the following: 10		
	(i)	Activity	,
	(ii)	Partial molal quantities.	
	(iii)	Excess function	
	(iv)	Ellingham-Richardson diagram	
	(v)	Johnson-Mehl equation.	
6.	(a)	What do you mean by fugacity? From P-V isotherm how departure from fugacity is explained.	5
	(b)	What is chemical potential. Deribe Gibb's Duhem relations.	5
7.	(a)	What do you mean by topo-chemical pattern of reaction. Discuss the significance of activation energy in a chemical reaction.	6
	(b)	Assuming aluminothermic reduction of Cr_2O_3 is a first order reaction, the rate constant is found to be 7.0×10^{-4} at 57° C. Calculate the energy of activation and its specific reaction rate at 127° C.	
B.Te	ech-3rd/		

8. (a) What do you mean by fugacity? Derive quantitative definition of fugacity

$$f = P.e^{-\frac{A}{RT}}$$
 from $P-V$ isotherm. $2+4$

(b) What is Dulong-Petit law. If the specific heat of copper is 0.096671 and that of silver is 0.05582 cal/g/0°. What will be the value of specific heat of an alloy of 60% Cu and 40% silver?